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Abstract. A nonlinear function hasbeen introduced for i ndexing the di sagreement degree of agroup of
judgment matrices (Weiwu Fang, 1994). It has many good properties and may be applied in decision
making and information processes. In this paper, we will discuss a globa optimization problem
concerned with the global maximum of this function which is constrained on some sets of matrices.
Because the size of matrix groups in the problem is arbitrary and the number of loca maximum
solutions increases exponentially, numerical methods are not suitable and formalized results are
desired for the problem. By an approach somewhat similar to the branch and bound method, we have
obtained some formulae on global maximums, a sufficient and necessary condition of the function
taking the maximums, and some maximum solution sets.

K ey words: Discrepancy, entropy, global maximization.

1. Introduction

Based on an axiom set, anonlinear function FDOD hasbeenintroduced for indexing
thedisagreement degreeof agroup of expert judgment matricesin the paper (Weiwu
Fang, 1994, hereafter abbreviated WF). This function has many good properties,
such as non-negativity, symmetry, monaotonicity, invariance for average, extensive
agreement, proportional principle, linear homogeneity, uniform continuity, bound-
edness and maximality. In the case of a vector set, the FDOD function is a convex
function w.r.t. each vector set. Thisfunction can be applied in decision making and
information processes.

For example, Kullback—Leibler entropy is one of the most important entropies
for measuring information discrepancy between two distributions (Kullback, 1978;
Kapur and Kesavan, 1992; Ullah, 1996). In (WF, 1996) we have compared this
function with Kulback—L eibler entropy, asis given in the following table.
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IAM-CAS: Institute of Applied Mathematics, Chinese Academy of Sciences
APORC : Asian-Pacific Operations Research Center
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Basic properties Shannon entropy K-L measure FDOD function
Basic meaning of Uncertainty, disorder, ... Discrepancy of  Discrepancy of
concept on adistribution two distributions agroup of distributions
Data amount 1 2 s>2

(number of distributions)

Non-negativity Yes Yes Yes

Identity Yes Yes

Symmetry Yes No Yes
Boundedness Yes No Yes

Uniform continuity Yes No Yes

Upper bound Int 00 s-Int
Convexity or concavity convexity convexity
concavity w.rtx € Iy

Linear homogeneity Yes Yes
Monotonicity Yes

Invariance for averages Yes

Limitation for data No Yes(if g; =0) No

exceptfor 30z =1

The FDOD function not only satisfies the basic properties of the K-L measure,
but also has other good ones, such as the continuity, monotonicity, boundedness,
linear homogeneity, invariance for averages, and so on. For example, let

t
Ty = {(z1,22, -, 2) | Zxk=1and$k >0}, (t=23,:--).

k=1
and given s distributionsp; e Ty (i = 1,---,s), s = ¢, and
P1 = (1707"'70)7
p2 = (0717"'70)7
Ps = (0707"'71)7

For these distributions, each outcome has complete certainty and all outcomes are
completely different from each other. From the meaningfulness of entropy, their
discrepancy should have a maximum value. In this case, the K-L method simply
can not be used to measure their discrepancies even for any two distributions, but
the FDOD function just has the maximum,

B(p17p27"'7p5)=3'|n8

from Theorem 3in (WF, 1994). Theresultisalittle surprising becausethe maximum
of Shannon entropy is, asiswell known, In s for any p;.

The question naturally arises: how about FDOD function maximumsin the case
of s # t? This function will be in closer connection with the entropy family if
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thereindeed existsresultssimilar to s - In s for other cases. In addition, the study on
maximums of a measure function is always one of the most important topics from
measurement theory’s point of view. Thisiswhy we want to discuss this problem
in the paper.

Suppose set I = {1,2,---,t}, J = {1,2,---,rt and K = {1,2,---,s}
(s,t >2andr > 1). Let G(t,s,r) or U := {Ux|k = 1,---, s} denote agroup of
matrices, where

Ulkl, U1k2, “° 5 Ulkr
Ui = [uirj] == : oL , (k=1---,3),
Utkl, Utk2 ** 5 Utkr
t r
uikj > 0 and ZZUZ’C] =1 (1)
i=1j=1
Wealsoletl(t,s,r) := {G(t,s,7)}, U isthesetof al matrix groups. Further,
we let U,ﬁ denote the j-th column vector (w1, uzk;, - - - ,utkj)T of U, and will

assume that no U} is a zero “vector”.
In (WF, 1994), the function FDOD, which satisfies seven axioms, for measuring
the degree of disagreement of expert judgmentsis found as the following:

B —ZBJ Ui, U3,---,U%) 2
7=1
where
B Uj,Uj,-- U Wik “23 D i 121 1 Wik
]( 1re I;_;L e k-—luzk] Zl 1 Yikj (3)
= ZZuzk |nu2kj Tk
k=1i=1 7 Kijese ['” ’
s t
K;; = Zuikj/sa Iy = Zuikj/ta 4
k=1 i—1

and0-In(0/0) = 0and 0 - In0 = O are defined.

In the formulae mentioned above, B(t,s,r) or B denotes a measure of infor-
mation discrepancy among the matrices of a G(t, s,r), B(t,s,r) is defined on
s r x t matrices, and B is afunction from (t,s,r)-tuples u;;; of non-negative real
numbersto areal number. B.J;(U{, U3, ---,U?) denotes ameasure of discrepancy
on column j, and B.J; is defined on s column vectors of the matrices.

In this paper, we will investigate the global maximum and its solutions of this
nonlinear function defined on the set U(¢, s, 7), i.e.

B
?EaZI( (U17 U27 ) US)
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t r
st ug;>0and Y > uyj=1 k=12
i=1j=1

Because the size of matrix groups is arbitrary (¢, s, and r are arbitrary) and
formalized results are desired, the numerical methods are not suitable for such a
problem. So thisis a difficult optimization problem in which the number of local
maximum solutions will increase exponentialy when the size of matrix groups
increases.

In Section 2, we will define a function and prove three inegualities. In Section
3, we will define some special matrix groups and get their FDOD values. Both
Section 2 and 3 are provided as a convenience in proofs of the following sections.
In Section 4, we obtain a sufficient and necessary condition of the function’staking
the global maximum s - In¢ by an approach somewhat similar to the branch and
bound method. In Section 5, we find out some maximum sol ution setsfor the matrix
groups with symmetric structure or s < t. Finally, for s > ¢ and non-symmetric
cases we will illustrate that there is at least some sort of matrix groups, whose
FDOD values are closeto s - Int in Section 6.

2. A Function and Threelnequalities
In this section, we define a continuous function and prove three inequalities as a
conveniencein the proofs of the following sections. We define

b b
f(a,b) = (a+b)|n(a+b)—alna—blnbzaln%wlnaz ,

where (a,b) € R2 and R3 = {(z,y) |z € Randz > 0,y € Randy > 0}.
f(a, b) hasthe following properties:

1. f(a,b) > 0. (5)
2. f(a,b) isasymmetric function.
3. lim f(a,b) = lim f(a,b) = lim f(a,b) = 0. (6)
a—0 b—0 a—0
of b af " a
58f— b i ¢ T _ and the

92" ot % 2T haxd) <> Bda atbd
Hessian matrix of second-order partial derivatives of f(a,b) is seminegative
definite, so f(a, b) isaconcavity function.

We use this function to prove three inequalities.

LEMMA 1. Supposez > b > 0,y > a > 0,
1Lif y—a<z— b, then

2y (a + 0) ) > (y + b)) (2 — b)@ P aop; (7)
2.if y—a>x—b,then



ON A GLOBAL OPTIMIZATION PROBLEM IN THE STUDY OF INFORMATION DISCREPANCY 391

Yy

Figure 1. Thedomains of functions f(z,y) and f f(a,b, z,y)
2%yY (a + b)) > (y — a) V"V (2 4 a) TV 020 (8)

Proof. GivenpointsO(b;a) and X (z;y) € R2 andthefunction £ (a, b) defined
onR3,fromz > b> 0andy > a > 0, weknow that thefeasibleregion of f(z,y)
isSAOB in Figure 1. Let line OP (y = x + a — b) divide AOB into two parts (the
line OPisacommon region) and ZAOP = /BOP = 45°,

1. Further, weassumethat thepoints O(b; a), X (z;vy), X1(z;y+e),and Xo(x—
e;y) areontheregion POA, and X (z;y + e)and X2(x — e;y) on OP (see Figure
1).1f XisonOP,wehavey = x+a—b,50 X (z;y) € POAimplies y—a < z—b.

Using the function f, we define afunction

ff(baaaxay) :=f(b,a)—f(x,y)—i—f(:v—b,y—i—b) (9)
on POA. of f of f
— z 9Ir _n_Y_ i
From(9),%—lnx_b>0and oy —Inb+y<0,wecanobta|n
ff(b,a,xz,yg):ff(b,a,x—e,y)gff(b,a,x,y)and (10)

ff(baaaxlayl) = ff(b,a,x,y-l—e) < ff(baaamay)' (11)
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Suppose (u; v) isapoint on theline OP and (u; v) # (b;a),i.e,v =u+a—b.
Letu = b+ rcosd5® andv = a + r Sin45°, according to (9), one gets

ff(bya,u,v) = f(b,a) — f(b+ rcosds?, a + rsin45°)
+f(b+ rcosd5® —b,a + b+ rsin45°) ’

Let cos45° = sin45° = ¢

orf

B lop = —clner +cIn(a+cr) +cin(b+cr) —cln(a + b+ cr)

(a+cr)(b+cr) nczrz—i—bcr—i-acr—i-ab 20
=c
(@a+b+cr)-cr cr2 + ber + acr

. (12)
=cln

It implies that ff is an increasing function on the line OP. According to (11) (or
(10)), (12) and (6)

ff(b,a,x,y)zf(ba) ( )—i—f(:L‘—by—i—b)
= (a+b)In(a —alna—>bInb
—(z +y)In(x
+(z +y)In(z +

(a + b)(@T0) g7y
a®b®(z — b)Y (y + b) WD)

+b)
+y)+zlnz+ylny

y) — (z— b)In(z — b) — (y + b) In(y + b)
)

> 0.

(a + b)(a+b>x$yy
a®t(z — b)) (y + b))

i.e., (7) holds.
2.Ontheregion POB, y — a > = — b holds and we define

> 1,

g9(b,a,z,y) = f(b,a) — f(z,y) + f(z +a,y — a).

Using the last function and a proof similar to that of 1 of this lemma, (8) can be
obtained. |

REMARK . It is easy to see that some conditions mentioned in Lemma 1 can be
relaxed,i.e.,ifoneusex > b >0, y > a > Oinsteadof z > b > 0, y > a > Oand
define0-In0 = O, then (7) also holds; similarly, if oneusesz >b> 0,y >a >0
instead of z > b > 0,y > a > 0, then (7) aso holds.
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LEMMA 2. If z > b > 0, then

2% > (z — b) @b,
Proof. The proof is similar to Lemma 1. We also can use Lemma 1 to prove it
asfollows:
Weknow that z > b > 0,lety =a > 0,theny —a <z — b, SO

%y (a + b)( @) > (y 4 b) W) (5 — p)@b)gop?
holdsfrom Lemmal, i.e,

2% > (z — b) @b,

3. Some Special Matrix Groupsand their FDOD Values

In this section, we definefive sorts of disagreement matrix groups and discusstheir
FDOD values.

DEFINITION 1. First pseudo-typical disagreement group PT1(¢, s, )
A G(t,s,r) iscaled as afirst pseudo-typical disagreement group denoted by
PTA(t, s, r) if there exists only one non-zero entry in each column of each matrix.
Anexampleof PT1(3,2,2) is

1/3 0 2/3 0
0 2/3 o o0 |.
(3%) (52

REMARK . InaPT1(t,s,r), for each j € J together there are s non-zero entries
of all matrices, hereinafter “for each j € J” actually means “for al j-th columns
of all matrices’.

DEFINITION 2. Second pseudo-typical disagreement group PT2(¢, s, )

A PT1(t,s,r) is caled as a second pseudo-typical disagreement denoted by
PT2(t,s,r) if for each j € J there do not exist such two rowsi and m (i,m € I
and m # i), that al uy,; = 0 (k = 1,2,---,s) but there are more than one
non-zero entries among the set {u,j| k = 1,2, -, s}.

The example of Definition 1isnot a PT'2(3, 2,2). An exampleof PT2(3,2,2)

is
1/3 0 0O O
( 0 2/3) (2/3 0 )
0O O 0 1/3
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DEFINITION 3. Third pseudo-typical disagreement group PT'3(t, s, )

A PT2(t,s,r) is caled as a third pseudo-typical disagreement denoted by
PT3(t,s,r) if the entries of matrices are distributed in such a manner, that all
non-zero entries are exactly located in the same s rows for s < ¢ or in ¢ rows
for s > ¢. The example of Definition 2 is not a PT'3(3,2,2). An example of
PT3(3,2,2)is

1/3 0 0 1/3
( 0 2/3) (2/3 0 )
0 0 0 0

REMARK . If s > t, thena PT2(t,s,r) isadsoa PT3(t,s,r). InaPT3(t,s,r),
suppose al rows with non-zero entries are denoted by 1,145, - -,4,, and s € K,
then K;; # 0, for ¢ = 49,42, --,i;andj = 1,2,---,r.

DEFINITION 4. Fourth pseudo-typical disagreement group PT'4(t, s, )

A PT3(t, s, r) iscaled asafourth pseudo-typical disagreement group denoted
by PT4(t, s,r) if the entries of matrices are distributed in such a manner, that the
total number of non-zero entries, which are in the same row and the same column,
of these matricesis [s/t] or [s/t] + 1 (assumes = m -t + n, [s/t] isthe greatest
integer not greater than s/t, i.e., [s/t] = m).

An exampleof PT4(3,4,3) is

1/2 0 0 0 1/31/3 0 0 O 3/51/5 0
(01/4o>(1/30 o)(o 01/6)(0 01/5>.
0 0 1/4 0 0 O 2/31/6 0 0 0 O

REMARK . The non-zero entries of different matrices may appear in the same
place (the same row and same column). For any PT4(t, s,r), it is easy to under-
stand that for each j € .J there exists n places with m + 1 non-zero entries, and
there existst — n placeswith m non-zero entries. For al j's, the product n - r gives
the total number of placeswith m + 1 non-zero entries, we call these places asthe
first places of amatrix group; and r - ¢t — r - n gives the total number of placeswith
m, we call them as the second places.

DEFINITION 5. Typical disagreement group T'(t, s, )

A PTA4(t,s,r) is called atypical disagreement group denoted by T(t, s, r) if
the value of each non-zero entry equalsto 1/r.

Anexampleof T'(3,4,3) is

1/3 0 0 0 1/31/3 0 0 O 1/31/3 0
(01/3o>(1/30 o)(o 01/3)(0 01/3>.
0 0 1/3 0 0 O 1/31/3 0
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We denote the FDOD value of any group of pseudo-typical disagreement
matrices by PT B(t, s,r), and, further, denote the FDOD values of PT'1(t,s,r),
PT2(t,s,r), PT3(t,s,r), or PT4(t,s,r) by corresponding each PT Bi(t, s, r),
PTBs(t,s,r), PTBs(t,s,r), or PT By(t,s,r).

THEOREM 1. For any group of pseudo-typical disagreement matrices (PT1, PT2,
PT3 or PT4),

t

r t
LK
PTB(t,s,r) = SZ ZKU In %, (13)
i=1j=1 i

and PT B(t, s, r) isa concave function with respect to K1, K;2, - - -, Kjy.

Proof. For any group of pseudo-typical disagreement matrices (PT1, PT2, PT3
or PT4), thereis only one non-zero entry for each column of each matrix, thus we
haveu,;,; = tIj; from(4), and accordingto (1) and (4), dlsohave K;; = > 51 %l

and Y1 I = 7 Syt K;;. Substituting them into the FDOD function (2) in
Introduction, it follows that

S
PTB(t,s,r) ZZZuszInUSZk_J Zk 1 Zzzuzmmtzk

Z

1= l] 1k=1 1= 1] 1k=1
K .
=3 3) DU ECINN o piltear ity <z“;ﬂ>
i= l] lk 1 i=1lj=1 Kij k=1
— SZ ZKZ] In &=y z 1KZ]
i=1j5=1

With respect to K1, Kip, - - -, Kir,

PTB LK 2PTB 1 1

0 = In==12Y 5, 9 = —; - — <0, and
0K K;j OK;; 'K K

*PTB _

OK;jOK;m

for j,m = 1,2,---,r, j # m. S0 the Hessian matrix of second order partial
derivatives of PT' B is negative definite, i.e.,, PT'B(t, s,r) is a concave function
with respectto K1, Kip, - - -, Kjpr- ]

4. A Sufficient and Necessary Condition on Global Maximums

In this section, at first we introduce three lemmas concerned with the entropy and
the upper bound of FDOD function, and define a sort of special operations, then
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we use an approach somewhat similar to the branch and bound method to obtain a
sufficient and necessary condition of FDOD function’staking the global maximum
s -Int; more detail, we will prove that any group of matrices can be transformed
into some special matrix group by a series of special operations, and the FDOD
value of any new matrix group obtained by each operationis greater or not lessthan
that of the previous group. Thus, we can investigate the maximization problem on
amuch smaller subset of set /(¢ s, r).

LEMMA 3. (cf. Theorem 2 of WF,1994). Given ¢, s and r, an upper bound of the
FDOD function of G(r, s,t) is s-Int.

Let I'; i= {($17$27"'7$t) | Zi;:lxk =1 and Ty = 0}7 (t:2737"')
and

t
Hy(z1, 22, -+, 1) i= — Z g Ny
k=1

where (x1, z2,- -+, x;) € T'y, then the following result is well known.

LEMMA 4. (Hartley's entropy, see Aczél and Dar6czy book, 1975)

11 1
_7_7"'7_):|nt
t t t

for all (z1,22,---,2) € Ty, and

Ht(x17x27 st ,[L‘t) < Ht(

with equality iff z; = %, (i = 1,---,¢).
LEMMA 5. If thereexistsonly h non-zero entriesin (z1,z2,---,x;) € [y, then
Hy,(z1,22,- +,2;) <Inh and

with equality iff z; = 1/h for all z; # 0.
Proof. From Lemma 4 and the N-symmetry and the Expansibility of entropy
(Aczél, 1970), where the Expansibility means

Ht(xla T2y Tt—1, O) = Ht—l(xla T2yt 7xt—1)7

the result is obtained immediately. O

We also need to define the sort of operations:

DEFINITION 6. A merging operation MO in column 5 of a matrix

Suppose there are two entries u,;; > 0 and uy,; > 0in column 5 of the k-th
matrix,

1. if wereplace u; by the sum of u,;,; and us,; and replace ugy; by 0, we call
it asa merging operation MO(b — a);

2. if wereplace uyy; by the sum of 4, and uy,; and replace u,,; by 0, we call
it asa merging operation M O(a — b).
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Each merging operation will produce anew group {U},} and the symbols corre-
sponding the new group will be denoted by B’, B.J}, uj.., K;; and I} ;, etc. In the
following Lemma 6 and 7 , we will discuss the change of FDOD function value
after each operation.

LEMMA 6. Supposea, b € I,anda # b, for each merging operation MO(a — b),
or MO(b — a), it follows that

B'~ B = BJ, - BJj

_ J Uakj
Z Uqkj In K/ Uakj In Kaj ) (14)

+ Z Ubk] In K, bk] In ij

Proof. From (2) (3) and (4) we know that I;, > I, and B.J,,(m # j) will
not be changed for each merging operation, i.e., Ik] IkJ,ZIk] > I;, and
BJ!, = BJ,,(m # 7). Thus,

B'—B = BJ. - BJj

s t Z Z
=2 D iyl Zk]—kllkj ZZW'“ S e ka

J

k=1i= 1 k=1i=1
= ZZ InZiki o, \n Wikiy
iki / ikj
k=11 ik K Kij (15)
Z k' t t
+ Z[(In Sk.:—}.J)(ZU;kj = uikj)]
i=1 i=1
Uips
— ZZ zk;]ln K, —uikjln Kl-kj)—i—O
k=1i=1 *
Fori #aandi # b, ujy; = uy; and K;; = K;;, we have
l

In = [ n
zk; j K' Uik sz

S0 (15) reducesto

S l

u . U ki
BJ.—BJ: = LN —2L N —==2
J J ;(uak] K/ — Uqkj Kaj)
S ! b
+Z(Ulbkjln 7 ]In—])
k=1 Ky, K,
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LEMMA 7. Supposea,b € I, a # b, u,; and uy; aretwo entriesof the k — th
matrix, and wy,,,; isan entry of them — th matrix,

LIf Koj > ugrj/s > 0and Ky; > /s > 0, then there is at least one
operation between MO(a — b) and MO(b — a), so that the new group of matrices
produced by the operation has the property BJ]’- —BJ; >0

2. If Kuj = ugrj/s > 0and Ky; > upi/s > 0, do operation MO(b — a);
if Koj > ugrj/s > 0and Ky; = upj/s > 0, do operation MO(a — b). In both
cases BJ; — BJ;j > 0,

3. If Kaj = uakj/s > 0 and ij = ubkj/s > 0, either MO(a — b) or
MO(b — a) will have BJ; — B.J; = 0;

4. 1f Kaj =0, Kb]' > ubkj/s > 0, and Kb]' > ubmj/s > 0, do MO(b — a)
and no matter which one of u,; and us,,,; is merged into the a-th row of matrices,
then in both cases B.J; — BJ; > 0,

5.1f K,; = 0and Kj; = upij/s > 0, MO(b — a) will produce a new group of
matriceswith B.J; — B.J; = 0.

Proof. Fori # a and i # b, u;kj = u;; and K{j = K;; hold after a merging
operation MO(a — b) or MO(b — a) isfinished.

1.(8). At first, assume

Koj — ugrj/s < Kpj — upkj/s. a7)
By MO(b — a), one gets
u;kj = Ugkj + ubkj,ugkj =0, K:lj = K,j + ubkj/s, and

Kll)j = ij — ubkj/s (18)

For clarity of presentation, we change the subscript variable £ of summations
in (14) into the variable /, and we know that uy,;; = w4, and u,; = uy; aso hold
for [ # k, thuswe can transfer (14) into

s
BJJI —BJ; = (Zualjln(K, ) +uak]|n ﬂk] Zualﬂln a]

=1

1%k 12k /
s s
Uak; i Yok
—Uqkj In—=) + Zublj In(K,,J) + Ubk] In—* = Z Uplj*
Kaj 1=1 Kb] =1
1#k I£k
Upkj
|n(ij) ubkjln Kb'>'
7
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Substituting (18) into the last formula, one gets

s S
BJ, —BJ; = (Zual]) In(KG;)~t = (Zuala’> In(Koq;)
=1

=1

14k 14k

<Zubl9> In(K;,)~* (Zuwg> In(Ky;)~*

=1 =1

Ik Ik
+(takj + ki) IN(Uakj + okj) + (Vakj + vor;) IN(KL;) ™

—1 —1
—Uqkj INUakj — Uakj IN(Kaj) ™" — wppj INUpgj — upr; IN(Kypj)

(Z“ala> In =4L + (Z“bh> In K’ Ty In & K’
12k

Ky; _ _
+ubk] In K, — Upk;j In(K,’,j) 1+ Upkj In(K{U) 1 (19)

+(Uakj + ubkj) |I’l(’u,akj + ubkj) — Ugk;j |I’l’u,akj — Upkj |I’lubkj

s /
K. K},
= Zualj> In—7< (Zubzg> + Upgj IN <—/
(l:l Ko K
+(Uakj + ubkj) |I’l(uak] + ubk]) — Ugk;j |I’l’u,akj — Upkj |I’lubkj

!

K K
=s| K, | K, +Kb9|nK, -I-ukaInK,
+(ak; + Upk;) In(uakj + Upkj) — Uakj INUaR; — Upkj INUpy;

(Kaj)s.Kaj . (ij)s-ij . (K’ )ub i . (Uakj +Ubkj)(u“k7+ub’°f)
(K"Ij)s-Kaj . (ng)s-ij . (K:I])ubkj . (Uakj)uakj ] (Ubkj)ubkj .

=1In

Let Koj =y, Kyj = x,upj = s - B, uq,; = s - A and substitute them into
(19); according to (18) and (17), we havey — A < z — B, K;;, = y + B and
K,;j =zx—B,y>A>0andz > B > 0; thus, using 1 of Lemma 1 and (19),
one gets

2% -y - (A + B)AHP)
(y+ B)WtB) (z — B)@=P) . 44 . BP

BJj—BJ;=sln >0

(0). If Koj — warj/s > Kpj — upkj/s, by operation MO(a — b), one gets

! ! !
ubkj = Ua]gj + Ubkj,uakj = 0, Ka] = Kag — Uakj/s, and
!
ij = ij + uakj/s. (20)
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Using a similar proof to that of 1.(a) of thislemma and according to 2 of Lemma
1, we have

oy (A4 B)(A+B)
(y — A)(y*A) (z + A)(HA) .AA. BB

wherey = K,j, © = Ky;, s- B = upj, s+ A =ugj,andy — A >z — B (from
(20)).

2.(a). Forthecasethat Ko; = uar;/s > 0and Kjy; > uyy;/s > 0, do operation
MO(b — CL), (18) holds, and Ka]' — uakj/s =0< ij — ubkj/s. Usmg the
same proof as that of 1.(a) of this lemma, we also have (19). So one can obtain
BJ.—BJ; > 0.

(b) For Kaj > uakj/s > 0 and ij = ubkj/s > 0, do MO(CL — b),
(20) holds, and K — uakj/s > Kpy; — upkj/s = 0. So from 1.(b) of thislemma,
BJ; — BJ; > 0holds.

3. If Ka]' = uakj/s > 0 and ij = ubkj/s >0, i.e, Kaj — uakj/s =0=
Ky; — upkj/s, doMO(a — b) or MO(b — a), and assume one does MO(b — a),
then

BJJ’.—Bszsln >0

! ! ! /
Kaj = (uakj + ubkj)/s, Upgj = 0, Ugkj = Uakj + Upkjs and ij = 0.

Using a proof similar to that of 1.(a) of thislemma, we have

, o ® ¥ (A4 B)ATD)
BJ; — BJj _Sln(y+B)(y+B)-AA-BB

Wherey = Kaj = uakj/s = A, T = ij = ubkj/s = B. So we haveBJ]’ —
BJ;=0.

It isthe same for doing MO(a — b).

4. For Ka]' =0, ij > ubkj/s > 0, and ij > mej/s > 0, assume that Upkj
is merged into the a-th row of the k-th matrix, then

! ! ! !
Uakj = Ubkjs Upkj = 0o Koy = upkj/s, and Ky; = Kpj —upkj/s.

Using a proof similar to that of 1.(a) of thislemma, one gets

iy

BJ;—BJ;=sln

(z — B)®=B) BB

where z = Ky;, and s - B = uyy,;. According to 1 of Lemma 2, we have BJJ’. —
BJ; > 0. Itisthe same for merging w,,; into the a-th row of the m-th matrix.
5. For thiscase, ug; = upkj, up,; =0, Kgj = wpkj/s = Kypj, Kp; =0, and
uqr; = 0, S0 from (14), one gets
!
u -
—akj _ Upkj In

Upj
; — =0.
aj

BJ:—BJ;=1u,.:In
7 J ak ij

7K,
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We will prove that any matrix group can always be transformed into some
pseudo-typical disagreement group, and FDOD value of new group is not lessthan
that of the original group in the following Theorem 2 and Theorem 3.

THEOREM 2. Givent, s, and r, the global maximum among {B(t, s,r)} equals
to that among { PT B1(t, s,r)}; further, if s > ¢, the global maximums can be
found only among { PT' B1(t, s,7)}.

Proof. For any two non-zero entriesu; and uyy; of any column of any matrix
in any group of matrices, there exists only three possihilities of relationship among

Ugkjs Ubkjs Kaj and ij : (8.) Kaj > u%kj > 0 and ij > @ > 0 (b)

Ko = ~%1 > 0and Ky > —21 > 0, 0r Koj > ~%1 > 0and Kjj = —21 > 0

(©). K,j = U‘f‘skj > 0and Ky; = @ > 0. Accordingto 1, 2, and 3 of Lemma
7, we can aways merge these two non-zero entries into one, and the B(t, s, r) of
the new matrices obtained by the merging operation is always not less than that of
the original. We can continuously do it until there exists only one non-zero entry
in each column. ThisisaPT1(¢, s, ) and its PT B1(t, s, r) is not less than that of
the original one.

In the case of s > ¢, assume that thereisa G(t, s,r) ¢ PTL(t,s,r), which
has the global maximum, thus there must be at least two non-zero entries in some
column 5 of some matrix k of the G(t,s,r) due to Definition 1, and we can
denote the non-zero entries by u,;; and ;. The possible relationship among
Uakj, Ubkj, Kqj and Ky;is (@) or (b) or (c) as above. If (a) or (b) holds, we can
always merge these two non-zero entries into one, and the B(t, s,r) of the new
matrices obtained by the merging operation is greater than that of the origina
accordingto 1 or 2 of Lemma7. If (c) holds, at first, wecando MO(b — a) (or
MO(a — b)), and obtain a new matrix group, B(t, s, r) of which equals to that
of the original from 3 of Lemma7. In this new group, K3; = 0O, so there must be at
leastarow i (i ¢ a and i ¢ b) with two non-zero entries u;;;, win,; dueto s > t,
which means K;; > u;;/s > 0and K;; > u;m;/s > 0; then, we can move u;;
(or ;) into the row b, and get another new group, B(t, s,r) of which is greater
than that of the former group according to 4 of Lemma 7. All of them indicate
that B(t,s,r) of the original G(t,s,r) is not the maximum of the problem. In
other words, the global maximum can be found only among PT Bi(t, s, ) when
s >t. a

THEOREM 3. Givent, s, and r,
1. themaximumvalueamong { B(t, s, r) } equalstothatamong { PT B3(t, s, r) };
2. for each j of any PT'3(t, s, ) , the greatest number of non-zero elementsin
set {K;;|i = 1,2,---,t} isat most
t(ifs>t) or s(ifs<t).

Proof. 1. For any PT1(t,s,r), if thereare K,; = O, upy; > 0, upmj > 0, and
a # b for some j, then we can obtained a new PT1(¢, s,r) with ng # 0 and



402 WEIWU FANG

K,’,j # 0 by moving upy; OF u,y,; into the a-th row, and its FDOD value is greater
than that of the original one according to 4 of Lemma 7 . We can continuously
do it until a PT2(¢, s,r) is produced, and its PT By(t,s,r) of this PT2(t,s,r)
is greater than that of the original PT'1(¢, s, r). From the Remark of Definition
3,a PT2(t,s,r) isasoa PT3(t,s,r) whens > t. For a PT2(t,s,r) with
s < t, one can also get a PT'3(t, s, ) by moving non-zero entries to some place
with zero entries, and its FDOD value of the new group equals to that of the
original PT2(t, s, r) according to 5 of Lemma 7. We can continuously do it until
a PT2(t,s,r) istransformed into a PT3(t, s,r). All of these imply that FDOD
maximum can befound in { PT'Bs(t, s,r)}.

2.GivenaPT3(t, s, r),foreachj € J thereareonly s non-zero entriesbecause
thereisonly one non-zero entry for each column of each matrix. Soit iseasy to see
that if s < ¢, we can at most get s non-zero K;;'s for each j; moreover, if s > ¢,
the number of non- zero K;;’sisat most ¢ for each j becausethere areonly ¢ rows.

LEMMA 8. Given acontinuousfunctionf(xll, Ce X1, D21, ,xzj, e XL,
t - i : 0 0 ,.0
x1j) = Yiq fil%it, iz, - -, xy5) definedonRY, ifapoint (23, - - -, 29, 13, - -

295, wly, -+, xg;) € R isaglobal maximumsolution of the following mexi-

mization problem: max f(z11, - -, z1, T21, - :pzj,-- s Tyl e, L) S ZZ 1Q1°

Tia+ap T+ +ag-z =b, thenthepomt( 19, ?2, - Z]) |salsoaglobal
maximumsolution of f;(x;1, z2, - - -, ;) with respect to z;1, z;2, - - -, z;; On some
hyperplanea;y - z;1 + aj2 - zj2 + -+ - + Qjj * Tij = b;.

Proof. Itistrivial toproveit by reductio ad absurdum. Suppose (z9;, - - -, 29, - - -

9, a:t]) isaglobal maximum solutionand a1 - 29 + aiz- 1%+ - - +aij - 2d; =

bi. If (22 T 12, --,x%) is not a global maximum point of f;(x;1, zi2,- -, %ij)
on the hyperplane a;1 - ;1 + a;2 - $12 + -4+ aU zi; = b;, then there is a
point (x 21, Thoy o, T U) so that a1 - ziq + a2 - iy + -+ + ayj :L";J = b; and
fi(@%, 2%, -, U) < fi(@jy, iy, - -+, ;) , andit will makeacontradictionto the
assumption. O

Finally, according to all results before, we can get the formulae and sufficient
and necessary condition on global maximums as follows.

THEOREM 4. Given a PT3(t, s,r), a sufficient and necessary condition of its
PTB(t,s,r)'staking maximums - Inh is

ZK” forz i,
ZKU=0forieIandz'¢z'1,---,7:h, (21)
j=1

and Kjj; = Ki,j =--=Kj,; (j=1,---,r) (22)
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whereh = swhens < tor h =twhens > t,and (i1, - ,ip, ) iSanindex subset
of .
Proof. Using (1) and (4), we have

t r
>3 Kijj=1 (23)
i=1j=1

From Theorem 3, we have known that the maximum of FDOD function can be
found among { PT'Bs(t, s,)}. We use Lagrange's method to find PTB(¢, s,7)'s
maximum. Using (13) and (23), one gets the Lagrangian function

1
L=—s- ZZK”InZ ZZK”
i=1j=1 i=15=1

Differentiating with respect to K1, K;2, - - -, K-, we get
t
InZKij — InKij — )\/8 =0, (_] =12--- ,7’), 1.€.,

t

=1

From (24), we have

t
ZKij =6)\/SKZ']' (j=1,2,"',7’). (25)

Using (25) and (23), one gets

/\/SZKJ—ZZKU—l and Y K =e 0 (26)

71=1:=1 7j=1

Substituting (26) into (25), we have
t r
Kij=(Q_Ki)Q_Kij)  (1=12-,1). 27
i=1 j=1

Dueto Y}, K;j # 0 (cf. Introduction), (27) also impliesthat 3°7_; K;; # 0 iff
K;; # 0.Because PTB(t, s, r) isaconcavity function w.r.t. K;q, Kjp, - - -, K;; (See
Theorem 1) and the constraint condition is linear, (27) holdsiff PTB(t, s, r) takes
the maximum w.r.t. K;1, K;»,---, K;.. For the original maximization problem,
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(27) is anecessary condition from Lemma 8, thus we can substitute (27) into (13)
and get

L > iz Kij
PTB(t,s,r) = s- K;;In =1
;; T (S Ki) (Z-1 Kij)
t r r
= —s-Y O Kij)(Ind_ Kjj).
i=1 j=1 j=1
Dueto 3", > ;=1 Kij = 1and Lemmas, finally, one gets the global maximum
"1
PTB (t,s,r):s-(;E)(Inh):s-lnh (28)
iff
" 1
S K= fori=iy---ip (21)
; h
j=1
where (i1,---,45,) iS an index subset of I, and A is such a number as great

as possible, that Z;Zl K;; is exactly not equal to zero for i € (1,42, -, 1p).
From (27) we have aready known that 377, K;; # 0 iff K;; # 0, so h is
also such a number as great as possible, that K;; is exactly not equal to zero for
s (i17i27 T 7Z'h)'

Substituting (21) into (27), it follows that

Lh
Kij = (Y Kij)-1/h (i = i1,00, -+ ip) and (j=1,---,7). (29)

=11
(29) implies
Kilszigjz"': inj (_]Zl,,’f‘) (22)

Thus, (21) and (22) are asufficient and necessary condition, sothat PT B (t, s, r)
takes maximum value s - In h.

For a PT3(t,s,r), we havethat h = ¢t whens > ¢, and h = s when s < ¢
according to Theorem 3. O

REMARK . Maximum s In ¢ here exactly equals the upper bound in Lemma 3.
5. TheCaseswith Symmetry Structureor s <t

In Section 4, we have obtained one sufficient and necessary condition of
PTB(t,s,r)'s taking the global maximum, here we indicate that there indeed
exist such groups in the matrix group sets, that they satisfy conditions (21) and
(22).

Givent, s andr, wedenote s by s = m -t +n (m = [s/t] isthe greatest integer
not greater than s /).
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DEFINITION 7. A G(t, s,r) iscaled asamatrix group with symmetric structure
if s=0(modt),orn #O0butn-r=0(modt)orn-r=0(mod s).

THEOREM 5. For any ¢, s, and r, the maximumof { B(¢, s, r)} isindeed
1Ls-Intifs>tand {G(ts,r)} isthe matrix group set with symmetry
structure; or
2.s-Insifs <t

Proof.
1. For s > tanda PT4(t,s,r), s = mt + n, and h = ¢ from Theorem 3.

A.Assumes =0 (modt),i.e, s =m-t,
further, assume
(a). thetotal of non-zero entries, which arein the samerow and in the same column,
of the T P4(t, s,r) ism (it iseasily placed for aT P4(t,s,r) oraT(t,s,r)) and
(b). every non-zero entry u;;,; hasthe samevalue 1/,
then

m ! m 1 T
j=1 j=li=1

Thus, the PT Ba(t, s, r) of thisTP4(t, s, ) hasthe maximum s - In¢ from Theorem
4.

B. Assumen #0, r > 1 andn - r = 0 (mod s),
further, assume
(). M entries of each matrix are distributed among n. - r first places,

— : < s

(cf. the remark of Definition 4) and their valuesare a,,, 11 = D E and
(b). r — M entries of each matrix are distributed among r - t — - n
second places and their values are a,, = ﬁf (these entries can aways be
placed because each matrix has r entries,
r="A=r-(m-t+n)/s=(r-m-t+n-r)/s=(r-m-t+n-r-(m+1)—
(n-r)y-m)/s=((n-r)-(m+1)+(r-t—r-n)m)/s>n-r-(m+1)/s, and
n-r-(m+ 1)/s isaninteger), then for this PT'4(t, s, ), we get

1 1 1 forf
Ky = 2o = By = by forsscondplaes )y Ky = and
mtl)enr - DTy (the last formulameans

S
that the sum of all entries of each matrix equalsto 1).
This PT4(t, s, r) satisfiesthe conditions (22) and (23), it hasthe maximum s - In ¢
from Theorem 4.

C. Assumen #0, r > 1, andn - r = O(mod t),
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further, assume

(8). the matrices of this PT'4(t, s, r) can be divided into two groups, the first group
with n matrices and the second one with m - ¢;

(b). &l n - r non-zero entries of the first group are respectively distributed inn - r
first places, and the values of al entries are equal to 1/r; and

(c). T entries of each matrix of the second group are distributed in the same
placesasthose of thefirst group, it can bedonebecausem -n-r+n-r = (m+1)n-r,

andtheentries’ valuesarea,, .1 = ~>—=L. Theremaining (r — m_T-T) entries

of each matrix are distributed in the second places, , and the entries’ values are
S

Am = 7 m-
then one gets

Kij=3-(m-ami1+ %) = r_lf for thefirst places,

K = % My, = r_lf for the second places, 371 Kij = %, and
ML g o (r — TT) g, = 1.

Its FDOD value of the PTA4(t,s,r)iss - Intfrom Theorem 4.

o

2. Fors < tandaPT3(t,s,r), h = s from Theorem 3. If &l u;;; have the

same value 1/r when u;;; # 0, thenal K;; = % and Z;ZlKij = %, and
theresult s - Ins can be obtained from Theorem 4. O

6. TheCaseswith Non-symmetric Structureand s > ¢

In the case of non-symmetric structure and s > ¢, instead of general analysis we
compare the FDOD value of typical disagreement cases with s - Int, the results
illustrate that the FDOD value of this sort of matrix groups are closeto s - Int.
The FDOD value of atypical disagreement group 7T'(¢, s, r) (see Definition 5)
isdenoted by T'B(t, s, ). We define T M(t, s,r) = TB(t,s,r)/(s - Int)

LEMMA 9. (see Section 6 in FW). TB(t,s,r) = (t —n)mIn(s/m) + n(m +
1)In(s/(m + 1)) wheren = s(mod t).

From Lemma9, we havethat T'B(t, s, ) equalsto the upper value s - Int when
s>tands =m=xt(i.e, n =0), and that TB(t,s,r) equals to the maximum
values - Ins when s < ¢.

THEOREM 6. 1> TM(t, s,r) > 0.9182
Proof. From Lemma 3 and Lemma 9, one gets 1 > T'M (t, s,r). We prove
TM(t,s,r) > 0.918 asthefollowing:
1. We assume s = m - t + n, and substituting it into TM (¢, s, ). SO
TM(t,s,r) =
(t—n)-m-In((mt+n)/m)+ (m+1) - -n-In((mt+n)/(m+1))
(mt +n)Int

(30)
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Differentiating (30) with respect to m, one gets

OTM(t,s,r)
om, N
t mt+n t n+mt
2 2
t—mn)(=— +(1+m)?- —~
=T A (g )
N (mt +n)(mt +n)Int
+<(t— )Inmt+n+ Inmt—l—n) 1
" m " 1+m ) (mt+n)int
mt+n mt+mn
t(m(t —n)l 1 |
B (m(t —n)In - + ( —i—m)nnl_’_m).
(mt +n)Int

Reducing the last formulae, we have obtained

OTM(t,s,r) 1+m

dueto t > n. It impliesthat TM (¢, s,r) is an increasing function w.r.t. variable
m when ¢ and n are arbitrary constants and ¢ > n, i.e.,, TM(t,mt + n,r) >
TM(t,t +n,r) whenm > 1.

2. we further assume m = 1, and from (30) we have

/((mt +n)?Int) >0

(t —n)In(n+t) + 2nIn 52

T My (t = 1
1(737T) (t—i—n)lnt s (3)
OTMi(t,s,r)  t+mn+2t-In2t —2tIn(t +n)
on N (t+n)2-Int
n+t—2t-In2
 (n+t)2-Int”’ (32)
and
0°TMy(t,s,r) In4 —4In2
anz |n=t(|l’l4—l>: _t2(|n4)3 Int > 0. (33)

According to (32) and (33), when

n=2-tn2—t=14(In4-1), (34
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(31) will take minimum value w.r.t. variable n. Substituting (34) into (31), one gets

(In(t-1n4))(t —t(—=1+1n4)) + 2t|n(t|%4) -(=1+1n4)

t(Int) - (In4)

In(tIn4) - In4 4 2In2(In2 — In4) (35)
(Int) - (In4)

In(In4) +1—2In2 1 _ 0.05967
Int > Int

Supposet, > 1. Using (35), we have

TMi(t,s,r) =

=1+

Int; — Int;
(Intz) - (Inta)

dueto Int; —Inty; < Oand In(In4) + 1 — 2In2 ~ —0.5967 < 0. This means
T M(t, s, r) isalso anincreasing function w.r.t variablet and n = ¢(In4 — 1).

3. Thus,inthecasethatt = 2andn = 1, TM (2, 3,r) ~ 0.9183 is the lower
bound of al TM(t,s,r). Infact, TM(3,4,r) = 0.9464, TM(3,5,r) = 0.9602,
TM(4,5,r) =0.9610,and T M (4,7,r) = 0.9751, - - . O

TMi(ts, 5,7) — TMa(t1, s,r) = (In(In4) + 1 — 2In2)(
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